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Two principal and rë1aI~ed topics are considered : (1) adaptive mesh

refinement for finite element computations , and (2) mesh refinement specifi-

cal ly for nonlinear flow problems. In the first instance the residual and

~~sociated trace theorems for variational problems are introduced to relate

- - the sol ut~ton error to a computable residual . This provides a theoretical

basis for a mesh refinement strategy. — 
-

A corresponding adaptive refinement procedure that automatically and

selectively refines the mesh is formulated and implemented for a class of

nonl inear transport problems in chemical engineering . In particular , a non-

l inear problem with a boundary-layer solution is investi gated. The strategy

of interweaving Newton solution and mesh refinement proves particularly ef-

ficient.

Two-dimensional compressible and transonic flows are next examined.

Mesh refinement of subregions of the flow field is appl ied to yield high

solution near a singularity for both the linear and nonlinear flows. Re-

finement and Newton iteration are combined , together with Mach number para-

meter izat lon , to determine an efficient and accurate solution algorithm.

Similar points for nonlienar viscous problems are also reviewed.

• * Invited lecture presented at FENOMECH ‘78 (Finite Elements and Nonlinear
Mechanics), Stuttgart, and to appear in the conference proceèdings ,
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ADAPTIVE REFINEMENT AND NONLINEAR FLUID PROBLEMS

Texas Institute for Computational Mechanics
University of Texas at Austin , U.S.A.

1. Introduction

In approximating the solution of boundary-value problems by finite

element methods, we are continuall y confronted with the problem of deciding

on a mesh , assessing the quality of the solution obtained with that mesh,

and perhaps iteratively adjusting and enrichi ng the mesh. As the solution

and its derivatives may vary markedly over the domain , nonun iform meshes

are warranted in the interests of computational efficiency. This is es-

pecially true of nonlinear problems where sol utions exhibit l ayer or singu-

lar behavior.

Of course , this refinement probl em applies quite generally to discrete

methods for boundary-value problems. In the present article we shall confine

the choice of appl ications to flow problems. Fluid mechanics has long been

a rich source of probl ems in applied mathematics. Many classical methods

of anal ysis, such as analytic function theory, have their origins and motiva-

tion in fluid mechanics . Problems with singularities , in ter ior layers , boun-

dary layers and nonlinearities , where meshes are important, are commonplace .

This is true of the entire gamut of viscous , compress ib le , rotational and

other flows and also of transport problems which are included here.

The focus of th is ar ticle is the un derl ying mathema tical ana l ysis, fi-

nite element technique , al gorithms and implementation of mesh refinement in

this context. Special points of interest concerning refinement in layers

and near singularities , and solution strategies, are developed for representa-

tive steady flow problems. Throughout , impor tant points are demons trated us ing
- •  1
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select problems drawn primaril y from onç’oln~ research studies of this topicl.

Shilar investiqations have also been carried out for nonlinear problems in

solid mechanics and work in both areas is continuinq. Hhere apot’ priate ,

àIthér resear~~ act
Tivitles related to this topic are also in~i~a~e~. 

- 
- 

-

2. Ref inement and Residual s

In many engineering applications one is able to predict those subregions

where the sol ution is changing markedly and use a finer mesh there. For in-

stance, the form of the loading or boundary data and shape of the domain

may indicate where the mesh needs to be fine. A preliminary computation on

a coarse uniform mesh may also be useful . Yet these actions only alleviate

the situation and do not resol ve the main probl em - the degree of local sub-

division is still unknown.

Ideally, we require an al gor i thm whi ch selectivel y ref ines the mesh in

appropriate subregions of the domain. This implies that we have some cri-

terion for automatically assessing the quality of the approximate solution

on intermediate finite element meshes. It is easy to devise ad hoc princi-

ples for refining the mesh. Monitoring the changes in local solution beha-

vior between successive meshes and extrapolating to the next mesh is perhaps

the simplest strategy and will often work reasonably well. We also note

that one can readily concoct pathological examples such as highly oscillatory

functions that will defy any refinement procedure (Try u = 
~~
- sin cx ,

O < c << 1).

A criterion which has a more rigorous foundation in the approximate

method Itself Is more desirable. Finite element methods are often based on

energy principles : the energy functional is minimized for the exact solution ,

and the approximate solution minimizes the same functional over a fini te

- ~~~~~ ~~~~~~~~ ~~ : ~~~
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dimensional subspace S(M), the class of finite element aooroximations on a given

mesh M . Refining the mesh produces a broader class of functions and a

lower value to the approximate global energy. This suggests that computation

of the energy for successive meshes will indicate the global quality of the

solution and meshes. Perhaps one can extend this argument to the local ac-

curacy of the energy contribution from individual elements or groups of ele-

ments as they are refined.

What may we infer regarding those problems where a classical energy

principle Is not available? The weak vari ational statement and generalized

solution constitute an equivalent integral formulation of a boundary-value

problem. The classical minimization principles are then included as a spe-

cial category. In turn, we recognize that the variational problem can be

Interpreted as a particular form of the method of weighted residuals. We

now appeal to this characterization to establish a suitabl e refinement cri-

terion. For a given approximation , the res idual represents the amount by

which the differential equation fails to be satisfied . An exact classical

solution yields residual R E 0. The variational problem is constructed from

a duality pairing between the residual R(u) and test functions v

- The various approximation methods require that the residual be close to

zero , in some sense. That is , the projection of the residual in the test

space is zero. For example: in collocation the test functions are delta

functions and the residual is forced to be zero at specific points; in

Galerkin methods the projection of the residual in the approximation space

or a subspace Is zero - in an appropriate norm, a point we shall shortly

develop . This leads us to exp’ore the use of the residual as an indication of

solution accuracy globally in the domain and perhaps even locally. Except for

very simpl e bases, the residual will usually be non-zero and well defined on an

element and the norms of the res idual eas i ly

L _ _ _
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cal cula ted there. For examp le , we could write for element ae the usual L2 norm

~~ 2II R LI~ 
= R dcz~ (1)

e )
e

Then a refinement scheme might be introduced that refines those elements

where 
~ 

R 
~~ 

per unit volume is large . The simplest case , a piecewi se linear
e

element draws our attention to a difficul ty here. The second order deri-

vat ives u ” will not contribute to the residual in the element interior but

rather as boundary terms (jumps ) at the element interfaces. -~Thes~e should be
included in the residual evaluation of eouation (1).

The foregoing discussion motivates a residual analysis to provide the

desired refinement criterion. In principle , we seek global and local error

boun ds for the sol ution in terms of computable element r e s id ua l s .  We -shal l

develop this basic analysis for the standard two-point problem. The trace

theorems allow us to employ the same residual analysis in higher dimensions

(1].

Following this theoretical analysis , residuals are employed in adaptive

refinement and related procèdui’es. A particular point ~e shall examine is that

of interweaving adapti ve mesh refinement with nonlinear solution iteration. Nurneri-

cal experiments are conducted to confirm that this is computationally very effective.

The particular examples described concern nonlinear heat and mass transport with a
boundary layer solution and compressibl e flow problems.
3. One—Dimensional Analysis

The one—dimensional problem has a very special connectivity - adjacent

elements meet at their end nodes. Since we are considering mesh refinement

strategies here, this implies that refinement by multiple “splittings” of

elements is relatively straightforward. New nodal points are introduced and

the continuity and differentiability of the approximation (C 0,C1,... functions)

—-- -—-— - — - — —
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are readily maintained .

We first summarize some fundamental properties of the residual for

l inear two-point problems. The details of the proofs are described else-

where [2-4]. Consider the standard linear problem,

—(p(x)u’)’ + q(x)u = f(x) in c~ = (0,1) (2)

with u(O) = u(l) = 0.

A general ized (weak) solution to equation (2) can be determined among

admissible functions u(x) € H~(c2) by requiring that

J p u ’ v ’ dx + 
J

quv dx - ffv dx = 0 
- 

(3)

for a l l  v ( x )  €

Let L denote the linear differential operator in equation (2). Then,

for an approximate solution U(x)€ ii~(c~) the residual R(x) = LU - f is de-

fined in a distributional sense by equation (3). Since Lu = f and LU = R + f,

then L(U - u) = R or Lc = R where c = U - u is the solution error. Now as u

an d U are i n H~, so is c , and R is in the dual space (Hi)’ = H~ . From

Hu bert Space Theory, the induced norn i n i s

R I( l~~ 
= sup 

1 
< R,w > I (4)

w € H 0 I~w II 1 ,~
w~ 0

Since Le = R with Lc = -(pc’)’ + qe , then from (3) we have on setting

v = c and simplifying

II c 1h,c2 ~ CII R ‘~l ,c2

L ~~~~~~~~~~~~~~~~~~~~~ — -
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where C is a constant.

This basic inequal ity forms the starting point of our residual analysis.

The H~~-norm is not readily computed, so we seek to repl ace the bound by an

expression involving computable element residuals. To evaluate ~ R II _ l

we return to the definition of equation (4) and examine the duality pairi ng.

On a partiti on of n el :ments of C°-Lagrange type,

<R ,w )  = 

~ J (pu’w ’ + quw - fw) dx (6)

H
Integra te by par ts on the en tire domain as a union of elements to obtain

(R ,w> = {-(pu ’)’ + qu - f}w dx + 1  (pu ’w)’ dx] (7)

Taking absol ute values and applying the Cauchy- Schwarz inequality to each

integral, we obtain

< R ,w >  I 
~ 

(II R 
~~~~~~~~ 

j f w  
~~~ 

+ h~~ [pu ’(x1÷1 ) - pu ’ (x~) J~ w

(8)
Si nce II w 

~~ ~ II W

< {
~I R I~~~ 

+ h~~!pu ’(x~÷1) - pu ’(x
~)l }lI w i

1— 1 1 (9)

From the Schwarz and Holder inequalities for finite sums ,

I < R ,w >  I I 
(i~l

11 R 11 o ,~ 
+ h

~~
(IPu ’(x

~+1
) - pu I(x

i )I)}
2
~ 2( Ii w iI ~~~~~

2 
1 :

(j o ) 
- 

I
We define the specific element residual as
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IIIR IU j = { il R 11 0,2. + h~~(l pu ’(x~~1) 
- pu ’(x~)I)} . 

( i i )

so that

2 ½
(R ,w> I ~ { .~ 

IIIR lIi i } 11 w 11 1 2  ( 12)
1=1

Using this  in equations (4.4),

R < ~~~ 
R t ii ~) 

= 
~ 

Rj~~ (13)

and inequal ity (4.9) is replaced by the global residual bound

II £ 11 12  < CIII R III 2 (14)

The element contr ib uti on to IIIR ~~ may be computed , within a constant C,

from equation (13). Since C is independent of h
~ 

an d w , the inequality

(14) is a practical bound that can be utilized directly in our refinement
- criter ion. As IMR 111~ is reduced by refinement, III R 11 2 w i ll a l so decrease

as wil l the glo bal erro r c

To obtain an effective local refinement criterion we need a local bound

on an element of the same form as inequality (14). Consider a subsidiary

probl em posed on an element and with nonhomogeneous boundary data (approxima-

tions to the solution values ) at the element end nodes. By similar arguments

to the above we obtain the l ocal error bound

£ Il~ ~2e I 
c ili R 111 2 + II ~ Il l ~2e 

(15)

- where n arises from the nonhomogeneous data and satisfies L~ = 0 in 2e

Ti = £ at the end nodes of an element. Using the trace theorems and maximum

— __ ___•t_______ ____,_t__• __&•_ ~~~~~~~~~~~~ A.~~~~ 
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principles , I) n II~ 
is negl i gible for h = max h~ sufficientlj small and

i
not near the boun dary of 9 . Hence , inequal ity (14) provides the des i red

local bound.

4. Al gori thm

Th i s res idual anal ysis establ ishes a theore ti ca l basi s for deve lopi ng

an adaptive refinement strategy for two-point problems . We now utilize this

residual criterion in a statistical procedure in which subregions are l oca ted

and refined automatically as part of the algorithm. The statistical approach

is qu ite robust as we demonstrate i n numer ical experimen ts.

Cons ider an in iti al mesh M
0(cz). A finite element approximation U(x) is

computed on M0(c2) and the element residuals computed according to equation

( 11) . The mean ~(M0) an d stan dard dev iati on s(M 0) are calcula ted for the

set of elemen t res idua l s { I I IRIII1}. We define refinement I:ifltervalsll on the

distribution of element residuals by considering the intervals I.~ = (-°°

+ ks ) , 12 = (
~ 

+ ksj + 2ks),..., ~ 
= (

~ 
+ (t_l)ks ,co), where k represen ts

the fraction of a stan dard dev iati on i n each i nterval . For example , if k = 1

~ I the refinement intervals lie l ,2,3...,t standard deviations above the mean

residual. Now if III R III~ 
is located in refinement i nterval j, then element i

is refined to j elements. An estimate of the solution at the newly-intro-

duced nodes is provided by local interpol ation in the old basis. On compl e-

tion of the refinement of M0(c2) to M1 (2) a solution can be computed on M1 (c2).

The residual calculations are straightforward and readily implemented

in a computer program. In the algorithm above we begin with an initial coarse

mesh M0(9) and the algorithm selectively refines the mesh in a systematic

manner to the f inal  mes h Mf(9) with solution u(x;Mf(2)).

It is not important that the criterion be precise at each mesh iteration .

L — —— —
~~~ ~~~~~

— _~~~~~~~
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Rather, the sequence of meshes generated need only approach an appropriate

final configuration . The means {~} of success i ve res idual d istribu tions

regress towards zero an d a na tural gradati on of the mesh i s inheren t in the

- 
scheme. These points are demonstrated in the example below.

5. Example: Interior-Layer Problem

Consider the two—point probl em

- [{  1. + c&(x - ~)
2)u ’]’ 2[l + ~(x - i)tan~~~(x - 

~~
) + tan~~c~ ) ( 16)

in 0 < x < 1 with u(0) = u(l) = 0. If c~ i s large , say (0(102)), then the

solu ti on

u(x) (1 - x) [tan~~~(x - + tan~~uxl (1 7)

has an interior l ayer in the neighborhood of x = x.

Numer ical resul ts are presented here for c~ 100 and ~ = .36388. In

the numerical experiment C° quartic elements are used , beginning with an

initial mesh M0(2) of four equal elements . After 8 adaptive refinements, the

finite element mesh consists of 29 elements with a gradual transition from

either side to smaller elements within the l ayer [7 in (O ,.25); 4 in (.25 ,.325);

9 in (.325 ,.375); 4 in (.375 ,.425); 5 in (.425,1.0)]. At this mesh l evel the

globa l residual is 7.479. On subsequent refinements many elements are l ocated

in the interval (0.25,0.5), particularl y at the interior l ayer. On the “final ”

mesh of 74 elements (43 of them in (.3125 ,.4375]) the global residual is .812.

The H 1 and H° norms of the global sol ut i on erro r are 9.895 x 1O~ and 1.411 x

- lO g
, respectively.

It is instructive to compare global residual and errors for the entire

refinement history . In Figure 1 we present typical results as a log-log plot

of global residual III R III versus H° and H 1 norms of the sol ution error. The

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~~~~ 
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straight line corresponds to a linear regression of these results. The resi-

dual and error decrease monotonically on successive refinements and the ex-

perimental values are consistent with earl ier theoretical results. Empiri-

cally, we have for this example, (~ 
£ = 4.703 x 10 6111 R 111 L706 and

II c Il l = 2.212 x 1O 3III R (11 1.517 
. The H1 error norm (slope 0.66) decreases

more slowl y than the H° error norm (slope 0.59). Qualitati vely, this re-

sembles the theoretical result for uniform mesh refinement. Data points for

a uniform mesh refinement are also plotted and lie on the linear regression

curves i n the figure. This confi rms the ar gumen t tha t the ab ility to compute

on an adaptive non-uniform grid using the residual criterion essentially en-

ables one to progress down the straight lines rapidly, reduc ing the error in

r the solution while incurring low storage and computation penalties.

[Figure 1)

-

~ 6. Nonlinear Probl ems -

-~ When nonl inear probl ems are cons idered , automated mesh refinement is

even more appealing, particularly if the solutions are not very smooth or if

layers again occur. Nonlinear analysis is a difficult topic and some of the

points of particular concern in finite element analysis of nonlinear boundary-

value problems are related to non-uniqueness and convergence. Here we wish

to examine the benefits of interweaving iterative solution and adaptive mesh

refinement. The finite element problem on each grid now requires the solution

H of a nonlinear system of algebraic equations. Evidently, it should be more
ef ficient to ref ine the mesh as soon as the sol ut ion itera te on a given mesh
has assumed the approximate form of a converged solution , rather than compute
a ful ly—converged solution on an inadequate grid prior to refinement. This

implies that one must estimate when to cease iteration and refine the current

- ~~~~~~~~~ -~~~.—- —~~~~~~~~~~~~
- —— - — -~~- 
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grid. The relative and absolute changes of element residuals may be used to

determine a stopping criterion.

To explore this strategy, we cons ider a class of non l inear probl ems

arising in heat and mass flow in chemical engineering. The design of effect-

ive catal ytic reactors , involving impregnated porous catalyst in the solid

phase immersed in fluid reactants, requ i res an un derstand in g of the trans port
processes in the solid material . Consider the diffusion of heat and mass in

a catalyst pellet where chemical reaction takes place. These problems are

characterized by nonlinear reaction rate terms, often i nvolv i ng exponent ials ,

and will exhibit multiple solution states and interior-layer or boundary-layer

behavior for some ranges of the reaction rate parameters.

Chemical engineers have developed high-order global approximation methods

to so lve these “ef fectiveness factor ” probl ems very accurately [5]. However,

these gl oba l methods prove unsat isfactory for the more di ff icul t probl ems

where higher derivatives may be discontinuous or boundary and interior l ayers

occur. To analyze these problems a C 1 orthogonal collocation scheme on finite

elements was devised and appl ied to a representative “effect iveness fac tor ”

problem with a boundary-layer [61. Problems such as these are best handled

by discrete element methods, particularl y if used in conjunction with an

adaptive refinement al gorithm that can grade the mesh appropriately into tne

layers .

The sol id phase consis ts of a porous base mater ial impregna ted w ith a

catalytic material . Typically, the geometry cons ists of sla bs, cyl indr ical

rods or spherical pellets. For these simpl e geometrical cc”~figurations the

governing equation simpl i fies to a nonlinear ordinary differential equation .

In particular , a first order, i rrevers ible , non-isothermal reaction in the

catalyst material may be described by 

—- ~~~~.~ —~~ —- - - -a--— . — - — . -—- -
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x~
’ 

(Xa—l U s)’ = f(x ,u), 0 < x < 1 ( 18)

where a = 1,2, or 3 is the dimension and boundary conditions are u’(O) = 0

and, for example, -u ’( l )  = B(u( l )  - 1), parameter B. For f •
2u exp {y(l-l /T )}

T = 1 + ~6 + 8(1 - ô) u ( l )  - 8u(x) and reaction rate parameters • = 14.4 ,

B = 0.02 , y = 20.0, ~ = 50, B = 250, the problem has multiple solutions, the

one of interest possessing a boundary-layer profile of order l0~~ near x = 1.

As the Thiele modulus • increases towards 14.4 , successive iteration

on the nonlinear term becomes ineffective . Newton iterat ion is successful

in determining the boundary-layer sol ution of practical interest. The Jaco-

bian matrix is easily evaluated as the nonlinear term contributes only to

the diagonal entries and to the last column . The general sequence of compu-

tations is depicted in the flowchart of Figure 2, [2].

[Figure 2]
Applying the refinement algorithm to this problem, we again initiate

solution with a coarse mesh of four elements. Results for three refinement-
iteration experiments are presented in Figure 3. The parameters C.~, C2 are

the residual tol erances in the stopping condition for successive Newton iter-

ates. The graph demonstrates that a single Newton iteration per mesh is most

efficient for this problem.

Even if the “final ” graded mesh is employed directly with the same start-

ing guess, more operations (1.64 x 106) are requ i red than in the ada ptive
refinement solution (l.25 x 106). Moreover, in general we do not have suf-

ficient advance knowledge of the solution behavior to affix such a severely

graded mesh.

[FIgure 3]
7. Potentia l Flows

A class of linear and non linear flow probl ems that are of considerable

_ _ —-  H I
- ~~~~~~~~~~~~~~~~~ ~~~~~ 

- 
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practical importance in aerodynamics arise in potential flow theory. We be-

gin with a treatment of mesh refinement applied to incompressibl e potential

flow. In particular , the local approximation near the leading edge of a 10

percent bi convex airfoil is examined . The class of problems is then enlarged

to admit compressible flpws , the nonlinearity enteri ng through the density .

Here a practical problem of current interest is transonic airfoil design .

The objective is to devise techniques and efficient algori thms for the tran-

sonic flow regime. We select this class of flows as representative nonlinear

applications for refinement studies. The theory and strategies are directly

applicable to other nonlinear problems as indicated in the previous sect ions

and the brief di scussions of other flow examples in the concluding sections of

this paper.

8. Incompressible Flow

Conservation of mass together with i rrotationality lead to the standard

potential equation for incompressible two-dimensional steady flows, ~ = 0

in 9 . In this instance , let us examine uniform flow about a 10 percent
biconvex airfoil at zero angle of attack

The potential function for the fully-infinite exterior flow field may

be determined from classical comp l ex variable theory [7],

— 

, ., - sinh b cosh b
~~x ,y, - 

2 —,--— 19

~ {(sin a cosh b) + (cos a sinh b )}

where

a = 
~~
- (tan 1 ~~~ - tan 1 

—
~~~

-)

b = ln [{(x+1)2 + y2 }½/{(x..l) 2 + y2 }~~

and = ~- cos1{( l-~
2)/(l +6) 2 } , camber 6
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There is a stagnation point at the leading edge and the solution is lessp smooth in this neighborhood. Similar probl ems ari se in other appl ications in-

volving corners or cracks , and local mesh refinement becomes important. In

general , for the Laplacian on a domain 2 with corner angle air , the leading

term In the singularity of • 
at the corner has the form r~’~ s1n 0/a . When

a > 1 the corner is not convex and the fi rst derivatives of $ are unbounded.

In the present Instance , since the flow field is symmetric the corner angle

a~r is less than -
~ so that the potential and velocity components (fi rst de-

rivatives of $ ) are wel l behaved here. The magnitude of the velocity q

decreases to zero at the stagnation point and then increases to a maximum at

the topmost point of the a i rfo i l .  In general , there are fewer than l /~x de-

rivatives at the stagnation point and 1 + 1/a derivatives in a mean—square

sense. For 1/2 I~ 
< 1 there are only two derivatives in a mean-square sense

so the sol ution •(x ,y) Is in H2 . If the airfoil is at a small angle of attack

the syntuetry condition cannot be applied so that 1 < a  < 2 and the solution is

only In H1. In the nonlinear problem to follow, we are no longer dealing with

Hu bert spaces and, moreover, the nature of the singulari ty and space are not

known.

In the following numerical experiment we exami ne the merit of refining
local ly in a subregion near the stagnation point. The effect of this strategy

for nonlinear analysis of compressibl e and transonic flows is then considered.
As the flow field is symmetric, it is sufficient to consider a single

quadrant. The complex variable solution is utili zed to provided Dirichiet

data in the far field on a remote but f in ite boundar y - the fi rst “window ”
in a sense. Our mesh of triangular elements Is generated automatically in

the region , as depicted in Figure 4 . Here the principles of conformal mapping
are Introduced : we identify a map between a reference “rectangular” domain
and the actual flow region. The mapping Is defined by solving the Dirichlet

I 

S- S.
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probl ems for the Laplacian , V2x = 0 and V 2y = 0, on the (x ,y) reference region.

Finite element techniques are well-suited to this task and the same program

can be used as in the flow computations. The nodal solution vectors of coor-

dinate values {xj},{y~} at nodes {i) -in 2 define the nodal locations in c2 [8].

This data basis and the generated data set are used repeatedly wi th very

minor modifications for successively refined subregions. Two further refine-

ments termed Mesh 2 and Mesh 3 are made in each of the computations for this

flow probl em. The corresponding subregions are marked in the figure.

[Figure 4]

8.1 Results

A finite element approximation ~(x ,y) to the potential field is calculated

using the given mesh of linear elements, Mesh 1. Th i s approx imati on , the exact

sol u tion , and error at represen tati ve poi nts on the a i rfoi l are l isted in Table

1 , and compared there with corresponding values obtained using Mesh 2.

Contour lines for the relative error e(x,y) = {s(x ,y) -

are graphed in Figure 5. The contour l evels range from 0.0 in the far field

to .0144 at approximately the 1/6 chord position on the airfoil. As antici—

pated, the contours are widely separated away from the obstacle and dense in

the near field where the error function rises abruptly towards the airfoil.

The subdoma i n 
~2 

for Mesh 2 is superimposed on the pl ot. The root-mean-

square (RMS) error on for Mesh 1 gives ln(r1 .~~~~) 
= -5.7 for N = 63 node

points. On the subregion 
~2 

the error for this mesh has in(r2 ~ 
= -5.2

for N = 25 and for (E31 ) = -4.8 for N = 7.

Subreg ion 
~2 

is next considered and the same mapping approach utilized

to generate Mesh 2. The boundary data is interpolated from the previous finite

element solution on Mesh 1. As part of the investigation , both exact and

prior finite element solutions were used to provide boundary data on 
~2

— 

—5-- 
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The results are consistent with those predicted from the theory earlier

(following equation (15)). The question of error propagation from a boundary

is more interesting and difficult for the nonlinear transonic problem. Dis-

turbances in the supersonic flow will propagate essentially unchanged along

characteristics whereas a maximum principle holds here for the linear problem.

Solution and error values at surface nodes for finite element computations

on Mesh 2 are given in Tabl e 1. Again , the error contour levels have the same

qual itative character as obtained using Mesh 1 on in Figure 6. However,

they are now less densely clustered and range from 0.0 in  the “new ” far-field

to .007 at approximately the 1/6 chord position on the airfoil. The error is

markedly reduced from that of the previous calculation: the log of the RMS

error on wi th Mesh 2 is in(r2 2 ) = -6.2 for N = 63 node points. Follow-

ing the previous procedure , we identify the subregion a
,~ and compute

1n( ~3 2 ) = -6.0 for N = 17. The actual choice of is more appropriately

suited to the nonlinear problem. As we shall see In the next section the

nonlinear compressibility effects are most important near the leading edge.

The final solution on Mesh 3 with boundary data from Mesh 2 produces

a similar error contour plot. The log of the RMS error on 23 IS

ln(t3 3 ) = -6.35 for N = 63. The error at the stagnation pont is .0015. The

numerical experiments and results are described in greater detail in reference

[9] .

[Figures 5-6 , Tabl e 1]

9. Compressibl e and Transonic Fl ow

The development of the nonlinear compressibl e flow field about an air-
foil Is now examined. Let M~ denote the uniform upstream Mach number In
the far field. An appropriate high Reynolds ’ number Re Is assumed so that

the flow remains attached wel l beyond the critical Mach number M
~ 

. For M,,,
slightly greater than M

~ 
, local supersonic pockets form on the upper and

l ower surfaces of the airfoil. Supersonic Mach numbers In the pockets are

- ~~~~~~~~~~~~~~~~~~~



_________________  

- -----
~~~~~ 

- -  - -

17

I

near unity and there is no distinguishable steady shock. As M~, 
increases

further , a steady shoc k appears at the rear boundary of the supersonic pocket.

This occurs when M is approximately 1.05. If M~, continues to increase,

the supersonic region grows and the shock moves downstream , increasing in

strength. A pressure jump occurs across the shock , and th is  eventually at

some M~ will lead to boundary-layer separation .

Finite element computations of compressible subsonic and slightly super-

critical flows are next carried out in conjunction wi th “windowing ” for mesh

refinement. We repeat the sequence of computations on the meshes described

in the previous section for incompressible aerodynamic flows. For transon ic

flows the problem is of mixed type , being elliptic in the subsonic region

and hyperbolic in the supersonic pocket . The mixed flow type, nonlinearity

an d shoc k di scon tinu iti es are primary areas of difficul ty. We shall cons ider
only the first two of these in this investigation . In particular , accurate
and efficient nonline ar sol ut ions are sought i n the vicini ty of the
airfoil. The exact solution is now unknown , an d we are una ble to exam ine
errors explicitly as we did in the previous linear problems .

The finite element formulation is first summarized. Using the Bernoulli

relation together with the adiabatic equation of state in the continuity

equation,we have the transonic full potential equation [9]

{l ÷ M2 CY-l ) (] - ~2 )}~ - .  - M2
~ ~ -~~~ 0 (20),J , 11 , -i ,j ,i j

~

I where M is the Mach number of the Lniform remote flow and Cartesian tensor
F notation has t een employed.r

Equivalently, we may rewri te the equation in the form

- 2~ ~ ~ (a 2 
- ~2)~ 0 (2 1)xx x y x y  I yy

- -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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where a2 
= a~ + )~~~~~~~~~~~ (U~ - - •~) defines the local speed of sound, y is

the gas constant, and U,~ is the uniform remote flow . The associated bound-
ary conditions in the far field are

O -~ U0,,x as x2 + y 2 +oo

and on the a irfo i l 
~y’~x 

= where f (x ,y) describes the upper surface.
A corresponding variational problem suitable for finite element compu-

tations can be constructed. The functional is

I = J {l + i~i M~(l - 

~~~~~~~ 
dA (22)

Introducing a linear finite element approximant into the integrand and

carrying out the usual variational procedures yields the element contribution

to the nonl inear  fin ite element system

= Ae + (Xii) M~ (l - ~
TM~)) 

‘

~ !~e!e (23)

where Ae is the element area and !~e 
= !x!~ 

+ with 
~e

(x
~

Y) =

This formulation and other approximate analyses are treated in greater

detail in reference [91. We consider mesh refinement and numerical solution

of the nonlinear equations g(~) = 0 obtained from equation (23). El ement

contributions to the Jacobian matrix in a Newton-Raphson iterative procedure

can be derived directly from (23). That is , j(~~1~~ - 4~~1)
) = -g~~ for iterate

1+1, and for each element

= Ae{
~~~~

Me + (y
~

l )M (M
~
)e(M

~~~
} (24)

where $ = [1 + 
( y 1 )  M~,(l - ~

TM~)l

~

• • ~~~~~~~~~
- - •
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In the foll owing numerical experiments Newton-iterative solution is com-

bined with mesh refinement on successive windows adjacent to the leading edge.

9.1 Results

Nonlinear finite element analysis with the nested meshes of Figure 4 is

now examined for compressible flow about the biconvex airfoil. Solutions

are computed at a subcritical incident Mach number M,~, = 0.6 and at the slight-

ly supercritical Mach number M,~, 
= 0.795. Isomach contours are graphed in

Figure 7 for the subcritical flow (M~ = 0.6) on 21 using Mesh 1.

[Figure 7]

In the numer ical exper imen ts we combi ne refi nemen t of su breg ions with

Newton iteration to a variabl e tolerance (error level). For example, the

fini te element solution on Mesh 1 is computed to a tolerance r = io 2 in
the Newton iteration. This requires 6 Newton i terates from the incompress-

ibl e starting solution. The solution is then sought on 22 with Mesh 2 and

to a tolerance of T = l0~~ in successive Newton i terates. Finally, using

the soluti on from Mesh 2, iteration proceeds on subdomain 23 and Mesh 3 at

tolerance T = 10~~.

The behav ior of the error in success ive Newton itera tes is analo gous to

that of the error function in the linear potential problems treated earlier.

In Figure 8 contours of solution i terate error on Mesh 1 are graphed. Con-

tour values range from -.006 to zero. The log of the RMS iterate error is

-6.4 for N = 63. Continuing to Mesh 2 on 22 at tolerance l0~~ the error

contours range from -2.6 x l0~~ to 1.4 x l0~~ an d ln (~2) = -14.4 after 2

iterations. Values of ~ and iterate error l e l at points on the airfoil

surface are given in Table 2. Finally, on 23 with Mesh 3 and a starting

i terate in terpol ated from the curren t iterate on Mesh 2, at r = l0~~ the con-

tours range from -8.1 x lO~ to 5.4 x 10~ and are shown in Figure 9. The

- ~~~~~~~ - 
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log of tne RMS iterate error is -14.0 after 3 Newton iterations.

The important point is that the absolute errors in each solution iterate

are near zero away from the airfoil and increase to a maximum near the leading

edge. Again , we are exploiting this feature of the error behavior , but in

this instance as applied to iterat ion errors rather than the solut i on error.

Ra pid convergence in the far f iel d allows us to reduce the doma in and use

the prev ious “coarse mesh sol ution ” to interpol ate an excellen t starting

guess on the new , finer mesh in  the near field.

We do not mean to infer that the actual error has the same behavior.

In fact , we know that the iterate error at the boundary is no better than

that of the previous mesh. Yet , it may be argued that, re lative to this

error, the errors in the interior of fol lowing subreg ions are being reduced

to zero. The final result is a solution in the neighborhood of interest,

the near fiel d of the airfoil , and on a fine mesh that is of satisfactory —

accuracy. Furthermore , this nonlinear solution has been obtained very ef-

ficiently.

[Figures 8-9, Table 2]

As we remar ked earl ier , the strategy proves useful if the success i ve

boundar ies rema in in the su bson ic flow. The refinemen t approac h i s a l so

successful for supercritical flows. At M,~,, = .8 there is a small supersonic

pocket adjacent to the topmost part of the airfoil. On Mesh 1 we find a

single element of the coarse mesh is supersonic. Progressing to Mesh 2,

there are several smaller elements that are supersonic and we obtain much

better resolution of the sonic line and mixed flow.
-

- To achieve convergence of the Newton iteration at supercritical Mach

numbers , we require an accurate starting iterate on an appropriate mesh.
In the presen t case , for mil dly transonic flows accurate computations of
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the flow field near the l eading edge can be obtained as fol l ows: (1) Begin

with an initial mesh on the largest domain and compute a potential solution ;

(2) Using the same mesh work up in Mach number and with few Newton iterates

un ti l the dom i nant chan ges in the sol uti on are l ocal ized near the a i rfo i l ;

(3) Introduce the new mesh , interpolating nodal solutions from the most re-

cently calculated vector on the previous mesh; (4) Continue iteration at

this Mach number on the new subregion and on following subregions.

If accurate approximations at the higher Mach numbers cannot be attained

on the initial mesh then errors at newly-introduced boundaries may l ead to

difficul ties. Al ternative iterative methods such as point relaxation schemes

may be appl ied to make the basic system solution more robust. These are cur-

rently being i nvestigated [8].

10. Other Problems and Refinement Techniques

In this final section a brief overview of other techniques and

applications is presented . Within this more general context one can

examine competitive refinement, enrichment, mesh equidistribution and

subregion refinement strategies and the classes of applications to which

they are best suited . Directions of continuing research in refinement

theory and technique are described . In particular , the implications

of these techniques to time—dependent problems and some related pro-

blems peculiar to refinement are noteworthy.

10.1. Refinement Techniques

Mesh refinement in one dimension is relatively straightforward .

The techniques described earlier for mesh enrichment guided by the

- --  - —— ~~~~~~~~~~~~~~~~~~ —— -
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residual are qualitatively similar to utilizing the truncation error in

finite difference formulations. An alternative approach, termed “equi—

distribution” in the finite difference literature , cons ers a mesh of

grid points and redistributes the mesh according to an error criterion

such as the residuals developed here. A simple strategy is “doubling

and halving” whereby the mesh size h is doubled in regions where the

solution is better behaved and existing elements halved in elements

where refinement is desired. Other “monitor” functions such as arc

length and measured of the local rate of change of solution have been

applied, particularly in finite difference and finite element colloca—

tion computations. A survey and bibliography is forthcoming [11].

One may also refine by increasing the order of the element, a relatively

easy process in one dimension but obviously sensitive to the quality of

the initial mesh.

Refinement in two or three dimensions is more difficult. Elements

meet along edges and surfaces respectively and refinement will often

introduce new nodes on the boundary of the original element. One or

two internal refinements that do not introduce any new nodes on the

old boundary might be acceptable. Engineering experience has shown

that idealizations with slender elements may often yield poor results.

Mathematically, we require that the finite element basis should be

uniform. This amounts to a constraint on the element geometry. If the

finite element approximation U(x,y) coincides with the exact solution

at the nodes of a triangular element, then

~u a U  1 Kd (25)
3x 3x — 2 sin O

~ 
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where K is a bound on a2U/ax
1~
x~ ! , d is the diameter of the ele—

ment and 0 is the largest angle of the triangle. The need for caution

is evident from the dependence of the bound on angle 0 . Also, slender

triangles may lead to deterioration of the numerical condition of the

algebraic system.

The natural refinement of a three—node triangle is to introduce new -

nodes at the side mid—points and subdivide the triangle into four con-

gruent subtriangles. Additional midside nodes are shared with adjacent

elements. Across an interface between refined and unrefined regions

the approximation must be constrained to ensure continuity . The

constraint can be embedded directly in the basis, and the approach has

— been used successfully for refinement towards a singular point 112].

Alternatively, Lagrange multipliers may be introduced to satisfy the

continuity requirement on the interface S between refined and unre-

fined regions. For potential flows the variational problem becomes:

make stationary the functional

i = J 4~ + ~
2
)d2 + J X (x,y)(~~ 

- 
~~)ds (26)

where &~. and ~~ represent the approximations in the refined and Un—

refined subregions adjacent to S . The argument can be applied using

penalty constraints rather than multipliers in the usual manner and

utilisec1 in nonlinear problems such as the compressible flow examples

considered earlier. In fact , for the transonic small disturbance

equation [9] the modified functional is very similar to that above,

-~~~~~ ~~~ - 5 -  -~~~~~~~~~~~ -
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f K 1~~3 l~~2‘l J 2~~
2 

- 

6 x
4

2 y
~~~

2

+ A (x ,y)(4’~ — ~~)d s (27) - 
-

‘S

An approximate analysis requires finite element expansions for both

~~x,y) in 2 and A(x,y) on S slightly increasing the size of

the algebraic problem. Details of the formulation and Implementation

are described elsewhere [13]. 
5

For many applications, excluding solutions possessing layers and

singularities, only moderate refinement is required. In this event

the additional complexity arising from the imposed constraint on

exposed nodes may be avoided by alternative refinements. One scheme,

that has been utilized in an algorithm for linear and nonlinar problems,

is to bisect the largest angle of a triangle and continue by subdividing

the adjacent element on the newly divided side 114]. The largest angle

of the second triangle may not be bisected so that some slender ele-

ments may develop. Yet for many applications it is unlikely that

there would be extensive bisections of a small angle early in the

refinement process. In [14] this approach is applied to E~u = 1/4 u3/r 3

in a triangular domain with eu/an + u
4 

— r
2 

0 on the slant side and

u = /i (the solution) on the remainder of the boundary. Refinement

proceeds from an initial triangulation of 3 elements to 60 elements

after 7 steps. The maximum error is 3.6 x lO~~.

The approach of refining nested subregions that is used in

Si the potential flow experiments of earlier sections has been in use

at least since the mid—sjixties.in finite difference computations and

- —5- 
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probably was practised much earlier than this. In industrial research

applications it has been in use in finite element computations since the

late s!xties and, applications to fluid mechanics problems have been

made recently [15,16]. In [15] the method is applied to viscous flow

through a two—dimensional diverging channel. The Reynolds number of

the flow is increased until primary vortices appear. In this particular

application the separation region in the channel is studied in detail by

-
~ re—meshing on the pertinent subregion. Oscillatory behavior of the solu—

I 
tion at moderate Reynolds numbers (around 37.5) necessitate the use of

under—relaxation methods. A similar point arises in the analysis of

supercritical compressible flows, but the behavior of the iteration

improves on successive nested meshes. Elsewhere [16] the incompressible

viscous flow problem has been studied numerically using a primitive

variable formulation with nested refined subregions. It is observed

from experiments that the procedure again is suitable for detailed

examination of separation with closed recirculation regions. As in

the case of the supersonic pocket studies, details of the flow near the

point of interest are not evident on the coarse mesh solution but are

resolved on subregion refinement. For a rectangular subregion the

velocity boundary data may be interpolated on three sides from the pre-

vious coarse—mesh solution. On the remaining side numerical experiments

indicate that the pressure distribution is required to ensure that mass

is conserved in the subregion. If velocity is also specified on the

fourth—side numerical instabilities arise as the incompressibility

5 

condition is satisfied only in an integral sense on the subregion.

Detailed numerical results are obtained for corner recirculation in a

driven cavity flow at Reynolds number 100.
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Recent theoretical work in the form of the residual analysis [2, 16]

is establishing a theoretical foundation for existing and future ref m e —

ment strategies in finite element computations and there are many

challenging problems in all areas of analysis, algorithm and implementation.

These difficulties notwithstanding., in closing, we raise the issue of time—

dependent analysis and adaptive refinement. Equidistribution techniques

such as the “doubling and halving” strategy are being applied to wave

propagation problems. Consider a propagating step—front , a model

problem frequently studied of convection—diffusion processes. A fine

H mesh is desired in the vicinity of the propagating front. A strategy

currently being explored 5 utilizes a residual analysis within a semi—

discrete finite element formulation, enriching the spatial mesh at times

and locations determined by the error criterion.

11. Concluding Remarks

An eventual goal mi ght be to formulate and impl ement a theory for

adaptive refinement whereby the analyst may specify conditions such as de—

sired global or l ocal accuracy, process ing cost, or storage limitations , to

determine an appropriate mesh. Realistically, when one deals with general

l inear an d nonl inear probl ems th is i deal can not be atta ined — the degree

of difficul ty of the problems and their divers ity is too severe. As we have

demonstrated , substantial progress can be made if one restricts the strate-

gies to specific classes of problems - here certain linear and nonlinear

flow and transport probl ems.

Even if the more ambitious general goal is ignored , one can apply re-

finement analysis and algorithms to great advantage . This is particularl y true

if the problems considered have layers or singularities , especially if their

location is not well known in advance. In treating nonlinear problems , much

of the underlying computation required to generate an accurate solution

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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iterate and also an appropriate mesh , can be carried out economically on

coarse meshes. The nonlinear iteration and adaptive mesh refinement can

thus be Interwoven to produce efficient algori thms.
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Table 1

Surface Nodes Mesh 1 Mesh 2
x y E E

.473 .078 .5289 .5214 .014 .525 .008

.747 .044 .8239 .8117 .015 .8196 .005

.907 .018 .9845 .9713 .013 .9792 .005

1.000 .000 1.068 1.060 .008 1.065 .003

Solution and error values~~t representative nodal points in
successive meshes.

Table 2

Surface Nodes Mesh 1 Mesh 2
x y le t  l e t
.473 .078 .5376 .001 .5479 io 6

.747 .044 .8327 .007 .8408 10-6

.907 .018 .9915 .006 .9960 io
_6

1.000 .000 1.0778 .005 1.078 io 6

Newton iterate error behavior on subdomain 123 for successive meshes
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.

• Uniform mesh refinement study

Slope 0.59 
~~~~~~~~~~~

—6 

~~~~~~~~~~~~;7 .~~~~~~~O 8
7

1 - Log HI R III

~~og~Ie I ~~
1 2

m 1

—2 -

Figure 1 - Log U e 11m versus Log III R III for D = 1.0
Numbers near data points indicate refine-
ment level.
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Define an r,l~-init ial grid
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Figure 2 Flowchart of refinement process for nonlinear problems.
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5 ‘

4 -  ~~C1 =C~ = 1O 7 
-

Oc1 =C 2= 10— 1

• One iterat~on per mesh
= 3 -  -

-

0 -  -

—1 I 1 1 I
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Operations in millions

Figure 3 Operation counts versus global residual for D 1.0.
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B~convex Airfoil

Figure 4. Gri d generation by mapping between reference and
physica l planes . Success i ve su bregi ons for
refinement are marked.
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Figure 5. Error contours for original domain 121 and
Mesh 1. 
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Figure 6. Error contours for final subregion 
~
22and Mesh 2.
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Fi gure 7. Compressible flow solution : Mach line
contours for incident flow at M = 0.6

on Mesh i. 
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Figure 8. Contours of iterate error on Mesh 1 at M~ = 0.6,
= io 2.
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FIgure 9. Contours of iterate error on Mesh 3 at = 06 ,
= 1o~~.
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